We determined previously that a rifampin-resistant strain of E. coli was transferred
infrequently among feedlot cattle housed in adjacent pens even when it was inoculated (1010 CFU) into Trojan steers [49]. In the present study, there was possible evidence of transmission of ampicllin-resistant E. coli among adjacent pens as identical AMPTE subtypes were recovered from TS steers in pens 3, 4, and 5 sampled on day E. Similarly, identical AMPSTRTE subtypes were obtained from V steers in adjacent pens 1 and 2 during this same sampling period. Our results suggest that the AZD8931 ic50 pen boundaries act as a significant impediment to the widespread dissemination of some AMR E. coli subtypes within the feedlot. At this point it is not known if a similar phenomenon would be observed in all feedlots as our feedlot only represented
a single ecological unit. Resource constraints limited our characterizations to only single isolate from each selective plate from each steer during later samplings. It further restricted our ability to study Dinaciclib concentration isolates from all steers on all treatments It is possible that this approach may not have given a complete picture of the genetic diversity of tetracycline- and ampicillin-resistant E. coli present in feedlot steers. Ensuring representative sampling is always a challenge considering the voluminous nature of digesta within the bovine intestinal tract and the number of cattle that are typically housed within a feedlot. Others have reported that examining single vs multiple isolates
did not compromise interpretation of the temporal trends or the nature of diversity of E. coli within cohorts [50, 51]. In early samples, where we did select two isolates, PFGE frequently identified both isolates as clones. That finding is perhaps not surprising, given the Danusertib price frequency Thalidomide with which we isolated clones from individual pen mates. This pattern may have been amplified by the use of selective plates for establishing the isolate collections, a practice that obviously selects for less diverse subpopulations. In the present study, the degree of diversity was clearly related to the nature of the resistant phenotype. Some phenotypes such as TE, SMXTE and STRSMXTE exhibited a high degree of diversity whereas others, such as AMPCHLSMXTE were solely of a clonal nature suggesting the resistance genes may be chromosomally encoded while others may be plasmid mediated both of which could contribute to the varying degrees of diversity among isolates examined. Screening for resistance determinants showed that the majority of tetracycline-resistant isolates harboured the tet(B) efflux gene, followed less frequently by tet(A) and tet(C). These findings are consistent with those of Walk et al. [22] who reported that 64.8%, 28.1 and 4.