This application Crenolanib in vitro might be useful for systems that are sensitive to genetically modified organisms according to (GMO)-rules. Conclusions Bacteriophage M13 is suitable for phage display not only with a modified gp3 but also with a modified gp9 which is a minor coat protein at the phage tip. The modified gp9 protein can be supplied in trans from a plasmid and fully complements an amber 9 phage mutant. The modified phage tip is very well accessible to specific antibodies. Methods Phage,
plasmid and bacterial strains M13 phage was from our lab collection [16]. M13am9 with an amber mutation in the second codon of gIX was constructed by site-directed mutagenesis [17]. For the construction of gp9-T7, gp9-DT7, gp9-HA and gp9-DHA RF-DNA of M13mp19 served as template for PCR amplification. click here The PCR amplified gIX was subcloned into pMS119 [18] and an unique MunI restriction site was introduced by QuikChangeTM in vitro mutagenesis between the learn more codons 2 and 3. Into this site RF-DNA of M13mp19 served as template for the amplification of gIX by PCR. The gIX fragment was subcloned into pMS119, DNA fragments encoding the T7 and HA tag sequences were introduced by ligation, resulting in pMS-g9-T7 and pMS-g9-HA. Also, longer
epitopes were introduced to construct pMS-g9-DT7 and pMS-g9-DHA, respectively. For protein expression and complementation experiments E. coli K38 (HfrC T2R relA1 pit-10 Interleukin-2 receptor spoT1 tonA22 ompF627 phoA4 λ-) [19] was transformed as a non-suppressor strain. E. coli K37 (HfrC supD32 relA1 pit-10 spoT1 tonA22 ompF627 phoA4 T2R λ-) [19, 20] was used as a suppressor strain and E. coli JS7131 (MC1060 ΔyidC attB::R6Kori ParaBADyidC + Specr) as a depletion
strain of the membrane insertase YidC [4]. Complementation test of phage expressing modified gp9 proteins On agar plates 4 mL melted LB top agar (47°C) containing 1 mM IPTG was mixed with 500 μL of a fresh E. coli K38 overnight culture bearing either pMS-g9/7 pMS-g9-T7, pMS-g9-DT7, pMS-g9-HA or pMS-g9-DHA. After solidification of the top agar, 10 μL of a phage suspension was applied on top of the agar from serial dilutions of a phage stock. Plaque formation was observed after incubation at 37°C overnight. Expression of the modified gp9 proteins 2 mL cultures of E. coli K38 bearing plasmids encoding a respective gp9 variant were grown at 37°C to the early exponential phase in M9 minimal medium. Protein expression was induced by adding 1 mM IPTG and 10 min later the newly synthesised proteins were pulse-labelled for 10 min with 20 μCi 35S-methionine. To remove the non-incorporated 35S-methionine the total bacterial proteins were precipitated with 12% TCA on ice overnight, washed with cold acetone and resuspended in 10 mM Tris/HCl 2% SDS, pH 8.0.