For Pd doping, 0 01 M solution of Pd was prepared

by mixi

For Pd doping, 0.01 M solution of Pd was {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| prepared

by mixing the required amount of palladium chloride (PdCl2, 99.999%; Sigma-Aldrich) in ethanol. The solution was stirred overnight to completely dissolve the Pd particles. Five-microliter portion of the above solution was precisely transferred onto the synthesized ZnO nanorods using a micropipette, and the whole mixture was heated at 250°C for 5 min to dry out the residual chloride. The structural properties of the Pd-sensitized ZnO nanorods were investigated using Bruker X-ray diffractometer (D8 Advance, Bruker AXS GMBH, Karlsruhe, Germany) with Cu Kα radiation at λ = 1.5406 Å. The X-ray diffraction (XRD) pattern was recorded in the range of 20° to 60° operating at a voltage of 40 kV and a find more current of 40 mA. The X-ray spectra peak analysis

was carried out by Diffraction plus 2003 version of Eva 9.0 rev.0 software. The material composition was analyzed using X-ray photoelectron spectroscopy (XPS) (Omicron Dar400, Omicron, Erlangen, Germany). The chamber pressure was maintained at 2.4 e−10 Torr throughout the measurement. CasaXPS software was used for the XPS peak deconvolution. Morphological studies were performed using a scanning electron microscope (JEOL JSM-6460LA, Akishima, Tokyo, Japan). Gas sensing measurements were carried out in a homemade gas chamber of 3-L capacity. The base of the chamber was made up Temsirolimus mw of stainless steel, and the upper area was covered with a high-vacuum glass dome. All the measurements were performed under atmospheric pressure. The chamber inlet was connected with the air pump and 1% H2 in balance

N2 gas (Moxlinde, Malaysia). The flow of 1% H2 gas was regulated using a mass flow controller (GFC-17, 0 to 100 ml/min; AALBORG, Orangeburg, NY, USA), whereas ADAMTS5 the air flow was controlled using a mass flow meter. Impedance spectra were collected at room temperature (RT) in the frequency range of 1 Hz to 10 MHz using Novocontrol alpha high-frequency analyzer (Hundsangen, Germany) under the exposure of variable ppm levels of hydrogen. Results and discussion The scanning electron micrograph depicting the morphological feature of ZnO nanorods grown on a thermally oxidized silicon substrate is shown in Figure 2. Uniformly distributed perpendicular and oblique ZnO nanorods of hexagonal shape having 50- to 100-nm diameter and 2- to 3-μm length were observed. Figure 2 SEM image of Pd-sensitized ZnO nanorods. The XRD spectra demonstrated two noticeable peaks at 34.5° (002) and 38.53° (211) planes (Figure 3a). The sharp peak located at 34.5° (002) plane of the synthesized ZnO nanorods revealed their high-quality crystals and c-axis alignment. The second peak at 38.53° (211) plane confirmed the presence of palladium oxide (PdO). The EDX spectrum of Pd-sensitized ZnO nanorods is presented in Figure 3b.

Comments are closed.