BMD_fn, BMD_ls and BMD_th were measured by the dual-energy X-ray

BMD_fn, BMD_ls and BMD_th were measured by the dual-energy X-ray absorptiometry (DEXA) method. Results were analyzed IAP inhibitor using univariate statistic model adjusted for sex, body mass index (BMI) and age.

Our results showed the significant differences in BMD_th, BMD_ls

and BMD_fn values (p = 0.031, 0.017 and 0.023, respectively) in subgroups of GSTT1 gene deletion polymorphism. For GSTM1 gene deletion polymorphism borderline significant association was found with BMD_ls (p = 0.100). Furthermore, subjects with homozygous deletion of GSTT1 gene showed higher BMD values on all measured skeletal sites and, in contrast, subjects with homozygous deletion of GSTM1 gene showed lower BMD values. Moreover, a gene-gene interaction study showed significant association of GSTM1-null and GSTT1-null polymorphisms with BMD_ls values (p = 0.044). Carriers with a combination of the presence of GSTT1 gene and the homozygous absence of GSTM1 gene fragment were associated

with the lower BMD values at all skeletal sites.

The significant association of combination of GSTT1 gene presence and homozygous absence of GSTM1 gene with BMD was demonstrated, suggesting that it could be used, if validated in other studies, as genetic marker for low Y-27632 manufacturer BMD.”
“ZnO thin film based surface acoustic wave (SAW) devices have been utilized to fabricate microfluidic pumps. The SAW devices were fabricated on nanocrystalline ZnO piezoelectric thin films deposited on Si substrates using rf magnetron sputtering Tariquidar in vitro and use a Sezawa wave mode for effective droplet motion. The as-deposited ZnO surface is hydrophilic, with a water contact angle of similar to 75 degrees, which prevents droplet pumping. Therefore, the ZnO surface was coated using a self-assembled monolayer of octadecyltrichlorosilane which forms a hydrophobic surface with a water contact angle of similar to 110 degrees.

Liquid droplets between 0.5 and 1 mu l in volume were successfully pumped on the hydrophobic ZnO surface at velocities up to 1 cm s(-1). Under acoustic pressure, the water droplet on an hydrophilic surface becomes deformed, and the asymmetry in the contact angle at the trailing and leading edges allow the force acting upon the droplet to be calculated. These forces, which increase with input voltage above a threshold level, are found to be in the range of similar to 100 mu N. A pulsed rf signal has also been used to demonstrate precision manipulation of the liquid droplets. Furthermore, a SAW device structure is demonstrated in which the ZnO piezoelectric only exists under the input and output transducers. This structure still permits pumping, while avoiding direct contact between the piezoelectric material and the fluid. This is of particular importance for biological laboratory-on-a-chip applications.

Comments are closed.