2009), and there are now many newly generated sequences of algal nuclear genomes that either have been
completed or are near completion; these include the sequences of Coccomyxa sp. C-169, Chlorella NC64A, Aureococcus anophagefferens, Emiliania huxleyi CCMP1516, Bathycoccus sp. (BAN7), Chondrus crispus, Porphyra umbilicalis, Ectocarpus siliculosus, Micromonas pusilla CCMP1545, Micromonas sp. RCC299, and Volvox carteri (see http://genome.jgi-psf.org and http://www.genoscope.cns.fr/spip/Plants-sequenced-at-Genoscope.html). It is likely that this list will rapidly expand over the next several years. We and other researchers have been exploring the genomics of Chlamydomonas (Grossman et al. 2003, 2007; Gutman and Niyogi 2004; Ledford et al. 2004, 2007;
Dent et al. 2005; Merchant et al. 2007; selleck González-Ballester and Grossman 2009; Moseley et al. 2009; González-Ballester et al. 2010) in the context of a number of other algae, photosynthetic microbes, and plants. The Chlamydomonas genomic sequence was generated by the Joint Genome Institute (JGI) from the cell wall-deficient strain CC-503 cw92 mt+. A BAC library has been constructed from genomic DNA of this strain (https://www.genome.clemson.edu/cgi-bin/orders?&page=productGroup&service=bacrc&productGroup=162). Chlamydomonas EST libraries have also LY3039478 been generated and characterized; one (isolated by researchers at the Carnegie Institution) was constructed with RNA isolated from strain CC-1690 21 gr mt+ (Shrager et al. 2003), while cDNA libraries analyzed in Japan were constructed from C-9 mt (Asamizu et al. 1999, 2000). Both of the strains
used for constructing the cDNA libraries are related to CC-503; they were derived from the same field isolate collected in Massachusetts in 1945. The mating partner used for mapping genetic loci in Chlamydomonas is designated S1D2, a field isolate (collected in Minnesota in the 1980s) for which significant EST information has also been generated. The EST sequences from S1D2 have been used to generate physical markers for fine scale map-based cloning Amobarbital of mutant alleles (Rymarquis et al. 2005). More recently, researchers have used the Chlamydomonas nuclear genome sequence and the gene models generated from that sequence for comparative analyses focused on identifying genes of unknown function that are potentially important for the regulation and/or activity of the various photosynthetic complexes. An initial analysis of the Chlamydomonas genome (Merchant et al. 2007) used the version 3.0 assembly. This assembly represents ~13X coverage of the genome, which is ~121 Mb. The use of ab initio and homology-based algorithms resulted in the generation of 15,143 gene models. The version 4.0 assembly of the Chlamydomonas genome was released in March 2009 (http://genome.jgi-psf.org/Chlre4/Chlre4.home.html). This assembly is composed of 88 scaffolds with 112 Mb of genomic sequence information.